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Local energy flux and subgrid-scale statistics in
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By V A D I M B O R U E AND S T E V E N A. O R S Z A G†
Fluid Dynamics Research Center, Princeton University, Princeton, NJ 08544-0710, USA
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Statistical properties of the subgrid-scale stress tensor, the local energy flux and
filtered velocity gradients are analysed in numerical simulations of forced three-
dimensional homogeneous turbulence. High Reynolds numbers are achieved by using
hyperviscous dissipation. It is found that in the inertial range the subgrid-scale stress
tensor and the local energy flux allow simple parametrization based on a tensor
eddy viscosity. This parametrization underlines the role that negative skewness of
filtered velocity gradients plays in the local energy transfer. It is found that the local
energy flux only weakly correlates with the locally averaged energy dissipation rate.
This fact reflects basic difficulties of large-eddy simulations of turbulence, namely
the possibility of predicting the locally averaged energy dissipation rate through
inertial-range quantities such as the local energy flux is limited. Statistical properties
of subgrid-scale velocity gradients are systematically studied in an attempt to reveal
the mechanism of local energy transfer.

1. Introduction
Perhaps the most important feature of three-dimensional turbulence is the energy

flux from large to small scales where energy is dissipated via viscous effects. In the
limit as the viscosity goes to zero, the total amount of energy dissipation has according
to Kolmogorov’s (1941) theory a finite non-zero limit. The mechanism of dissipation
in this zero-viscosity limit is purely dynamical. The singularity of the zero-viscosity
limit reveals itself in the fact that although viscosity is an irrelevant parameter in the
inertial range, it eventually provides dissipation at the smallest scales of the system. In
other words, viscosity provides an ultraviolet cutoff at a dissipation wavenumber kd. In
the inertial range, the fluid is effectively described by the inviscid equations while the
direction of the energy flux imposes irreversibility on the flow. Revealing the dynamics
of this local energy flux is one of the most fundamental problems in turbulence. It is
also of practical importance for the large-eddy simulation (LES) of turbulent flows.

We use filtering to give an intuitive idea of scales of motion (see for example
Germano 1992). For a low-pass spatial isotropic filter of scale ` the filtered large-
scale velocity is

〈vi〉` =

∫
ϕ`(x− y)vi(y)d3y. (1.1)

For scales ` for which the molecular viscosity term is negligible the filtered Navier–
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Stokes equation for an incompressible turbulent flow takes the form

D` 〈vi〉`
dt

≡ ∂ 〈vi〉`
∂t

+ 〈vj〉`
∂ 〈vi〉`
∂xj

= − ∂

∂xj

(
〈p〉` δij + τij

)
(1.2)

with pressure 〈p〉` determined from ∂i 〈vi〉` = 0 and subgrid-scale (SGS) stress tensor

τij = 〈vivj〉` − 〈vi〉` 〈vj〉` . (1.3)

At inertial-range scales, the molecular viscosity term is irrelevant and is dropped in
(1.2). Summation over repeated indexes is implied throughout if not stated otherwise.

The large-scale energy balance is deduced from (1.2) in the form

∂tE` + ∇ · J ` = −Π`. (1.4)

Here E` = 〈v〉2` /2,

J ` =
(
〈p〉` + E`

)
〈v〉` + τ · 〈v〉` (1.5)

and

Π` = −∂i 〈vj〉` τij . (1.6)

The term J ` in (1.4) represents the convective contribution to the energy flux at
inertial-range scales while the term Π` represents the local energy flux from large
scales to small scales (see Eyink 1995). Π` gives the ‘effective dissipation’ of energy
at scales larger than ` due to the action of scales smaller than ` on the gradient of
the large-scale motion. For stationary homogeneous turbulence,

〈Π`〉 = Ē, (1.7)

where Ē is the average energy dissipation rate.
Locality of energy transfer holds if Π` depends only on local gradients of large-

scale velocity. The standard way to model the SGS stresses is to introduce a scalar
eddy viscosity ν` defined by

τij = −ν` 〈Sij〉` , (1.8)

where Sij = (∂ivj + ∂jvi)/2 is the strain rate. A popular model of ν` is Smagorinsky’s
(1963) model

ν` = 2(cs`)
2
(
〈Sij〉` 〈Sij〉`

)1/2
. (1.9)

The concept of scalar eddy viscosity plays a central role in most turbulence closures
or renormalization group calculations. It is usually assumed that elimination of
small-scale degrees of freedom leads to enhanced scalar eddy viscosity.

A number of attempts have been made recently to check the representation (1.8) in
direct numerical simulations or laboratory experiments (see Liu, Meneveau & Katz
1994 for a review). This approach, frequently called a priori testing, was pioneered by
Clark, Ferziger & Reynolds (1979). It consists of using fully resolved velocity fields
to compare the local instantaneous subgrid stress with the prediction of the subgrid-
scale model. With this approach it has been repeatedly observed that scalar eddy
viscosity closures and the Smagorinsky model in particular display little correlation
with the real stress τij . On the other hand, it was noticed by Bardina, Ferziger &
Reynolds (1980) that τij at scale ` shows a high correlation with τij at larger scales
(say those between ` and 2`). The assumption that τij equals the resolved stresses at
scales between ` and 2` is called the scale-similarity model. Recently, similar results
were obtained by Liu et al. (1994), where this representation was called the nonlinear
model. Basically this model goes back to Leonard (1974) and in the simplest form
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states that

τij = cn`
2 〈Aik〉` 〈Ajk〉` , (1.10)

where cn is some O(1) constant and

〈Aij〉` =
∂ 〈vi〉`
∂xj

. (1.11)

The representation (1.10) is essentially equivalent to the representation of τij in
the scale-similarity model of Bardina et al. (1980). As follows from (1.10) the eddy
viscosity in this case is not a scalar but a tensor quantity. We will call such a model
the tensor eddy viscosity representation.

Here we present an a priori numerical study of the statistical properties of the
SGS stress tensor τij . We present data demonstrating that the representation (1.10)
accurately describes the statistics of τij . However, we emphasize that a fundamental
drawback of a priori analysis based on direct numerical simulations data is the
restriction to relatively low Reynolds numbers.

In previous work (Borue & Orszag 1995a), we have already demonstrated that
for given numerical resolution, we can effectively increase the extent of the inertial
range of three-dimensional turbulence by an order of magnitude by using alternative
forms of dissipation. To do this, we replace the normal Newtonian dissipation by
a higher power of the Laplacian, i.e. hyperviscous dissipation. It was shown by
Borue & Orszag (1995 a, b, 1996 a, b) that three-dimensional inertial-range dynamics
is relatively independent of the form of the hyperviscosity and that modest resolution
simulations with high-order hyperviscosity lead to sufficiently extensive inertial ranges
that measurement of a broad variety of otherwise intractable flow quantities can be
made. In this work we use the same numerical data set to analyse statistical properties
of the subgrid-scale stress.

A scalar eddy viscosity representation of the SGS stress tensor will always lead
to a positive local energy flux (see (1.7)) It is known from the LES literature (see
Reynolds 1990 for a review) that in a priori tests the local energy flux defined by (1.6)
is not positive. Such negative local energy flux is usually called ‘backscatter’ in the
literature. In contrast with a scalar eddy viscosity, tensor viscosity can lead to a local
energy flux that is not always positive. The tensor eddy viscosity representation (1.10)
leads to an expression for the local energy flux that accurately describes both regions
of positive local energy flux and the backscatter regions where the local energy flux
is negative. The sign of the local energy flux depends on the local values of velocity
gradients. Using (1.6) and (1.10), the local energy flux can be represented as

Π` = cn`
2[−Tr

(
〈S〉3`

)
+ 1

4
〈ωi〉` 〈Sij〉` 〈ωj〉`], (1.12)

where ωi = εijk∂jvk is vorticity and the symbol Tr stands for the trace of a matrix.
From (1.12), it follows that the local energy flux is positive if the skewness of
the filtered strain matrix is negative and the vorticity production (stretching) term
〈ωi〉` 〈Sij〉` 〈ωj〉` is positive. It has been known for a long time that, in turbulence,
the average derivative skewness is negative and the stretching term is positive (see
for example Orszag 1973 or Monin & Yaglom 1975). The symmetric matrix 〈Sij〉`
is characterized by its three real eigenvalues z1,2,3, whose sum must be zero by
incompressibility. One of these eigenvalues is always positive, z1 > 0, another is
always negative, z3 < 0. The sign of Tr(〈S〉3`) = 3z1z2z3 depends on the sign and the
probability distribution of the middle eigenvalue z2. If the middle eigenvalue z2 is
predominately positive when z1 is large the strain matrix is negatively skewed.
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Note that in the case of inviscid dynamics the tensor eddy viscosity model (1.10)
leads to effective equations that are time-reversal invariant. This is in contrast with
the scalar eddy viscosity representation (1.8). However, constraining the local en-
ergy flux (1.12) or the skewness to be non-zero breaks the time reversibility of the
Euler equations. The possible dynamical mechanism involved in this behaviour was
suggested by Viellefosse (1982, 1984), who showed that, in the local interaction ap-
proximation, Eulerian dynamics leads to a singularity in finite time. At times near
the singularity, there is a strongly negative derivative skewness z2 > 0 in which also
vorticity is aligned with the middle eigenvector leading to positivity of the stretching
term. An exact solution of Viellefosse’s equations was obtained recently by Cantwell
(1992). As might be expected non-locality and viscosity smooth out the singularity.
However, what is important is the basic instability of local velocity gradient dynamics
that produces the positive local energy flux. (The issue of finite time singularities of
three-dimensional Eulerian dynamics remains open, although recent evidence tends
to support their existence (R. Pelz 1996, R. Kerr 1996, personal communications)).

In this work we systematically study the dynamics of velocity gradients as a function
of scale. Early work on this was done by Ashurst et al. (1987) who demonstrated
that the geometry of small-scale motion in isotropic turbulence exhibits a number of
features in common with the results of Viellefosse. Since then a number of similar
results were obtained by other groups (see Cantwell 1993 and She, Jackson & Orszag
1991 for reviews). In this work we partially repeat some of the measurements done
before while adding new results.

2. Technical background
2.1. Numerical methods

We solve the hyperviscosity modified Navier–Stokes equations in a periodic three-
dimensional cube of sides L = 2π with large-scale isotropic white-in-time forcing
using numerical resolutionsN3,N = 64, 128, 256. The hyperviscosity-modified Navier–
Stokes equations are

∂tvi + vj∂jvi = −∂ip+ (−1)h+1νh∆
hvi + fi, (2.1)

where the pressure p is calculated from the incompressibility condition ∂ivi = 0.
On the right-hand side of (2.1) we include a force which is non-zero only at some
characteristic scale kf〈

fi(k, t)fj(k
′, t′)
〉
∼ δijδ(k2 − k2

f)δ(k + k′)δ(t− t′), (2.2)

and a hyperviscous dissipation designed to provide an energy sink at small scales. The
Gaussian force f is chosen to act only on the smallest wavenumber shells kf = 1, 2.
The power h = 8 of the hyperviscous dissipation is chosen to maximize the extent
of the inertial range (see Borue & Orszag 1996 a). The hyperviscosity coefficient νh
with h = 8 is chosen so that νh(N/2)2hδt ≈ 0.5, where δt is the time step of the
numerical scheme. The time step on the other hand is fixed by the characteristic
maximum velocity at large scales vmax according to the Courant number criterion:
vmaxδtN/2π 6 0.2. The characteristic velocity is set by specifying the amplitude of the
force (2.2). The Reynolds number in this setting is independent of the amplitude of
the force. Thus all parameters of (2.1) are uniquely defined by the large-scale flow
and the numerical resolution. We solve (2.1) using a parallel pseudospectral code
described by Jackson, She & Orszag (1991).



Local energy flux in turbulence 5

4

3

2

1

0
–1.5 –1.0 –0.5 0

(i) (ii) (iii)

(a)

(b)

–1.5 –1.0 –0.5 0

(i) (ii) (iii)

1.2

0.8

0.4

0

log10 k/kd

J E
(k

)/%
E

(k
)k

5/
3 /%

2/
3

Figure 1. (a) Scaled energy spectra E(k)k5/3/E2/3 (part of the spectra corresponding to k = 1, 2
are not shown) and (b) scaled energy fluxes JE(k)/E as functions of log10k/kd. Resolutions 2563 (i),
kd = 82; 1283 (ii), kd = 41 and 643 (iii), kd = 21. Hyperviscosity with h = 8 is used.

In a statistically steady state, a constant energy flux

JE(k) =

∫ ∞
k′>k

T (k′)dk′ (2.3)

has been observed (Borue & Orszag 1995 a) for kf 6 k 6 kd. Here T (k) is the energy
transfer function and kd is defined as the wavenumber at which the maximum of
the vorticity spectrum k2E(k) is attained (kd ≈ N/3 for h = 8 where we assume
henceforth that wavenumbers are measured in 2π/L = 1 units). The definition of the
kd through the vorticity spectrum leads to the approximate independence of kd of the
hyperviscosity type h. The isotropic energy spectrum E(k) is expected (Kolmogorov
1941) to have the form:

E(k) = 2πk2 〈vi(−k)vi(k)〉 =
Ē2/3

k5/3
G(k/kd, kd/kf) (2.4)

with possible anomalous dimensions (deviations from Kolmogorov scaling) included
in the function G. Here Ē is the mean energy dissipation rate set by the external
forcing. In the case of hyperviscous dissipation the energy dissipation rate is defined
as

E = νh∆
h/2vi∆

h/2vi. (2.5)

The Taylor-microscale Reynolds number for hyperviscous turbulence is defined as
(Borue & Orszag 1995 a)

Rλ ≈ 50

(
kd

kf

)2/3

. (2.6)

The various characteristics of the statistically steady state in this case are described
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in Borue & Orszag (1995 a, 1996 b). Some deviations of the energy spectrum E(k)
observed in Borue & Orszag (1995 a) are linked to persistent large-scale anisotropy in
Borue & Orszag (1995 b). For decaying turbulence, Kolmogorov’s 5/3 law is recovered
(Borue & Orszag 1995 b). Regardless of the small deviations in the energy spectrum
this numerical set-up is capable of correctly reproducing such subtle characteristics
as the statistics of the energy dissipation rate (Borue & Orszag 1995 b).

In this work we consider the case of large-scale white-in-time Gaussian forcing
(Borue & Orszag 1995 a, 1996 b). For completeness the isotropic energy spectra E(k)
and the energy fluxes JE(k) are plotted in figure 1.

The measurements reported here are carried out to assure statistical convergence of
the results. Numerical integrations are performed over at least 10 large-eddy turnover
times for each measurement. Convergence is also checked for each data set. Most
of the measurements are performed for numerical resolution 1283. To study the
Reynolds number dependence some measurements are also performed for 643 and
2563 resolutions.

2.2. Filtering procedure

For a field A we define a low-pass spatial isotropic filter of scale ` as a convolution

〈A(x)〉` =

∫
ϕ`(x− y)A(y)d3y. (2.7)

There is no filtering in time. The convolution (2.7) is carried out naturally in Fourier
space as 〈

Â(k)
〉
`

= ϕ̂`(k)Â(k) (2.8)

where ϕ̂`(k) and Â(k) are Fourier transforms of the corresponding fields. The filter is
normalized by

ϕ̂`(0) =

∫
ϕ`(x)d3x = 1. (2.9)

The filters that are employed are

top-hat: ϕ`(x) =
6

π`3
θ( 1

2
`− r), ϕ̂`(k) = 3

ξ3 [sin(ξ)− ξ cos(ξ)] ;

Gaussian: ϕ`(x) =

(
10

π`2

)3/2

exp

(
−10r2

`2

)
, ϕ̂`(k) = exp

(
− ξ

2

10

)
;

cut-off: ϕ`(x) =
1

2π2r3
[sin(η)− η cos(η)] , ϕ̂`(k) = θ

(π
`
− |k|

)
,


(2.10)

where r = |x|, ξ = 1
2
|k|`, η = πr/` and θ(x) is the θ-function.

All three filters are isotropic. The top-hat and Gaussian filters are positive in
physical space, i.e. ϕ`(x) > 0. The cut-off filter is oscillatory. For the top-hat filter
the moment of inertia is

〈
x2
〉
`

= 3`2/20 and the Gaussian filter is scaled so that it

has the same moment
〈
x2
〉
`

as the top-hat filter. The cut-off filter is slowly decaying

in space; the moment
〈
x2
〉
`

diverges. As can be seen only the Gaussian filter is
non-oscillatory in both physical and Fourier space. The top-hat filter is oscillatory in
wavenumber space. The cut-off and top-hat filters are extreme representations of so-
called Butterworth-type filters. These can be made either non-oscillatory in physical
space (positive) or in wavenumber space.
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It turns out that if the filter is positive in physical space, the results discussed in
this paper are practically independent of the type of filter. However, in some cases
our results may be somewhat dependent on whether the filter is positive or oscillatory
in physical space. While discussing the results, we will point out specifically if such
a dependence has been observed. Moreover, the cut-off filter leads to similar results
to Butterworth-type filters which are smooth in Fourier space but still oscillatory in
physical space. Therefore, top-hat, Gaussian and cut-off filters serve as characteristic
representatives of the various positive and oscillatory low-pass filters.

Since we believe that most of the physical quantities under study are local in
space we prefer to use filters that are localized and positive in space, i.e. top-hat
and Gaussian filters. This assures that if we filter a positive quantity, it will remain
positive after filtering. Detailed discussion of issues of filter positivity can be found
in Vreman, Geurts & Kuerten (1994) (see also Eyink 1996).

It is convenient to introduce the characteristic wavenumber of the filter

kc =
π

`
. (2.11)

To assure that filtered results are relatively independent of the dissipation range we
chose kc in the inertial range. Usually we carry out measurements for kc = 4, 8, ...N/4.
As can be seen from figure 1(b), these wavenumbers are within the range of the
constant energy flux.

2.3. Analysis of correlations

As the basic tool in our analysis of correlations of various scalar, vector and tensor
fields we use joint probability distributions of these fields. Each field is obtained
simultaneously by the appropriate filtering procedure with the filtering performed
in Fourier space. For example let us consider two such fields A(x) and B(x). In
the case of isotropic, homogeneous and statistically stationary turbulence, the joint
probability distribution P(A,B) can be calculated using a scatter plot of A,B with
averaging performed both in space and in time.

The correlation coefficient between A and B is defined as

ρ(A,B) =
〈AB〉 − 〈A〉 〈B〉[

(〈A2〉 − 〈A〉2)(〈B2〉 − 〈B〉2)
]1/2

(2.12)

where we indicate space–time averaging by 〈...〉. We expect that if the variable A is
nearly statistically equivalent to the variable B then the correlation coefficient ρ(A,B)
should be close to unity.

Another useful diagnostic is the average of one variable conditioned on another.
For example the conditional average of B on A is defined as

〈B|A〉 =

∫
dBBP(A,B)∫
dBP(A,B)

(2.13)

For strongly correlated variables we expect that

A ≈ 〈A|(〈B|A〉)〉 and B ≈ 〈B|(〈A|B〉)〉 . (2.14)

The joint probability distribution P(A,B) is visualized by plotting isocontours of
log10P(A,B) in the (A,B)-plane. In addition we also plot 〈A|B〉 as well as 〈B|A〉.
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Figure 2. Joint PDFs between the Smagorinsky eddy viscosity tensor for its i 6= j components

ξ =T(S)
ij and the same components of the actual SGS tensor η = τij . Top-hat filters are used. Means

are subtracted and variables are normalized by their variances. The coefficient ρ is the correlation
coefficient between these two tensors. Isocontours of log10P are plotted in increments of 0.4. Dotted
curves are conditional averages of abscissas conditioned on ordinates and dashed curves are vice
versa. The results are plotted for 1283 numerical resolution (kd = 41) and (a) kc = 4, ρ = 0.42; (b)
kc = 8, ρ = 0.37; (c) kc = 16, ρ = 0.27; (d) kc = 32, ρ = 0.23.

3. Structure of the subgrid-scale stress tensor
In this section we present results on component-by-component correlation be-

tween the subgrid-scale tensor (1.3) directly measured in our simulations and the
Smagorinsky eddy viscosity model (1.8) as well as the tensor eddy viscosity model
(1.10).

3.1. Scalar eddy viscosity

With the scalar eddy viscosity model, the SGS stress tensor τij is represented as

T(S)
ij = −2(cs`)

2
(
〈S〉2`

)1/2

〈Sij〉` . (3.1)

In our numerical simulation we simultaneously measure the SGS stress tensor τij(x)

and the Smagorinsky representation of this tensor T(S)
ij (x) given by (3.1). The joint

probability distribution P(τij ,T(S)
ij ) for i 6= j is plotted in figure 2. A top-hat filter

is used and the data are obtained for the case of 1283 numerical resolution. The
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Figure 3. Joint PDFs between the tensor eddy viscosity representation for the i 6= j components

ξ =T(T )
ij and the same components of the actual SGS tensor η = τij . Top-hat filters are used. For

details see figure 2 caption. (a) kc = 4, ρ = 0.87; (b) kc = 8, ρ = 0.83; (c) kc = 16, ρ = 0.88; (d)
kc = 32, ρ = 0.97.

correlation coefficient ρ between the actual SGS stress tensor and the scalar eddy
viscosity representation decreases as the scale ` decreases. The correlation between
τij and T(S)

ij is rather low (ρ changing from 0.42 for kc = 4 to 0.23 for kc = 32). These

results are nearly independent of Reynolds number as checked using 2563 numerical
resolution. Moreover, the results remain unchanged when a Gaussian filter is used.
However, the correlation decreases by nearly a factor of two when a cut-off filter is
used. This observation is consistent with the results of Liu et al. (1994).

The observed correlation coefficient ρ is approximately twice as high as those that
have been observed by Liu et al. (1994). We attribute the difference to the fact that
we measured all components i 6= j of both tensors. On the other hand, Liu et al.
(1994) measured correlations between only a few components of the two tensors and
the statistical data set in our case is substantially larger than theirs.

3.2. Tensor eddy viscosity

In this subsection we will demonstrate that a substantially higher level of correla-
tions exists between the actual SGS stress tensor τij and the tensor eddy viscosity
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Figure 4. Joint PDFs between the diagonal components i = j of the traceless tensor eddy viscosity

representation ξ = T(T )
ij − 1

3
δijT(T )

` and the same components of the traceless actual SGS tensor

η = τij − 2
3
δijK`. Top-hat filters are used. For details see figure 2 caption. The results are plotted

for 2563 numerical resolution (kd = 82) and (a) kc = 4, ρ = 0.9; (b) kc = 8, ρ = 0.88; (c) kc = 16,
ρ = 0.83; (d) kc = 32, ρ = 0.87.

representation (see (1.10))

T(T )
ij = cn`

2 〈Aik〉` 〈Ajk〉` . (3.2)

As in the case of the scalar eddy viscosity representation, we measure the actual
SGS stress tensor τij and the tensor eddy viscosity representation T(T )

ij for various
filter sizes. The joint probability distribution obtained for the case of the top-hat
filter P(T(T )

ij , τij) is plotted in figure 3. The i 6= j components of the tensors are used.
As can be seen from figure 3, the correlation coefficient between the actual SGS
stress tensor and the nonlinear representation of this tensor is high. Indeed, these two
tensors are nearly identical.

The joint PDF plotted in figure 3 is obtained for 1283 numerical resolution using
the i 6= j components of the tensors. We checked that the high level of correlations
of these tensors remains the same in the case of higher Reynolds numbers (with 2563

numerical resolution). The level of correlations between other components of these
tensors is also high. To check the level of correlations of the diagonal components
we need to check separately the correlations between traces of these tensors and
correlations between their diagonal traceless parts. According to (1.3), the trace of
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Figure 5. Joint PDFs between traces of the tensor eddy viscosity representation ξ =T(T )
` and the

actual SGS tensor η =K`. Top-hat filters are used. For details see figure 2 caption. The results are
plotted for 1283 numerical resolution and (kd = 41) (a) kc = 4, ρ = 0.86; (b) kc = 8, ρ = 0.87; (c)
kc = 16, ρ = 0.91; (d) kc = 32, ρ = 0.97.

the actual SGS tensor τij is twice the SGS turbulent energy

K` = 1
2
τii = 1

2

(
〈vivi〉` − 〈vi〉` 〈vi〉`

)
. (3.3)

The trace of T(T )
ij according to (1.10) and (1.11) is

T(T )
` =T(T )

ii = cn`
2
(
〈S〉2` + 1

2
〈ω〉2`

)
. (3.4)

The joint PDF of the diagonal components of the traceless actual SGS tensor and
the traceless tensor eddy viscosity representation P(T(T )

ij − 1
3
δijT(T )

` , τij − 2
3
δijK`) is

plotted in figure 4. To illustrate the Reynolds number independence of the correlations
we plot the joint PDF for the case of 2563 numerical resolution. As can be seen from
figure 4, a high level of correlation is also observed. The application of the smallest-
scale filter with kc = 32 for the case of 1283 resolution leads to a correlation coefficient
ρ = 0.97 (see figure 3 d). For the same scale kc = 32 the higher Reynolds number
data leads to the correlation coefficient ρ = 0.87 (see figure 4 d). Therefore, for the
case of 1283 resolution, the smallest-scale filter has a scale which is too close to
the dissipation range. On the other hand, in the case of 2563 numerical resolution,
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Figure 6. Joint PDFs between the i 6= j components of the tensor eddy viscosity representation

ξ =T(T )
ij and the actual SGS tensor η = τij for different filter types. For details see figure 2 caption.

The results are plotted for 1283 numerical resolution (kd = 41) and filter scale kc = 8 for (a) top-hat
filter, ρ = 0.84; (b) Gaussian filter, ρ = 0.88; (c) cut-off filter, ρ = 0.42; (d) ϕ̂`(k) = exp[−(k/kc)

8]
filter, ρ = 0.62.

the filter scale kc = 32 is already sufficiently far from the dissipation range and the
correlation coefficient remains nearly the same as for the other larger-scale filters.

So far we have demonstrated the high level of correlations between the traceless
tensors T(T )

ij and τij . Generally speaking, this result is sufficient to assert that these
two tensors are statistically equivalent. Indeed, the traces of these tensors can be
absorbed into a redefinition of the pressure. Nevertheless we will demonstrate that
traces of the actual SGS stress K` (3.3) and its tensor eddy viscosity representation
T(T )

` (3.4) are also strongly correlated. In figure 5 we plot the measured joint PDF
of the traces of the actual SGS stress and the tensor eddy viscosity representation
P(T(T )

` ,K`). Here 1283 numerical resolution is used (the data for 2563 numerical

resolution giving similar results). As may be seen from figure 5, T(T )
` and K` are

strongly correlated with a correlation coefficient ρ at nearly the same level as for the
other components of these tensors.

3.3. Influence of filter type

As noted above, a top-hat filter is positive and localized in physical space. On the other
hand, this filter is oscillatory and slowly decaying in Fourier space. The cut-off filter
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details see figure 2 caption. The results are plotted for 1283 numerical resolution (kd = 41). The
filter scales are (a) kc = 4, ρ = 0.83; (b) kc = 8, ρ = 0.81; (c) kc = 16, ρ = 0.89; (d) kc = 32, ρ = 0.89.

on the contrary is positive and localized in Fourier space but oscillatory and slowly
decaying in physical space. Only the Gaussian filter is positive and non-oscillatory in
both spaces. It is natural to use one or the other type of filter depending on what
we want to stress. If we believe that the system under study behaves locally in space,
the top-hat filter is a good candidate. For systems that are non-local in space but
local in Fourier space, the use of the cut-off filter is more natural. In both cases, it is
safe to use a Gaussian filter. In the case of fluid turbulence we prefer to use positive
filters (Gaussian and top-hat) since we believe that there is substantial locality of the
effective dynamical equations.

To illustrate how different filters affect the joint probability distribution P(T(T )
ij , τij),

in figure 6 we plot P for top-hat, Gaussian and cut-off filters (see (2.10)). We also
presents results for a smoothed version of the cut-off filter with the Fourier transform
of the filter function chosen to be ϕ̂`(k) = exp[−(k/kc)

8] with kc defined in (2.11). The
PDFs are measured for non-diagonal i 6= j components of the tensors with the filter
scale kc = 8 (where 1283 numerical resolution is used). As can be seen from figure 6,
the correlation coefficient decreases with the decreasing filter localization in physical
space. Therefore, spatially localized filters are more appropriate than non-localized
ones for the representation of a spatially localized quantity such as the SGS stress
tensor.



14 V. Borue and S. A. Orszag

3.4. Derivatives of the SGS stress tensor

It is not the SGS tensor itself but rather the vector

N
(τ)
i =

∂τij

∂xj
(3.5)

that participates in the filtered Navier–Stokes dynamics (see (1.2)). Therefore it
is interesting to check whether the high level of correlations between τij and its

representation T(T )
ij persists for the derivatives of these tensors, namely we measure

the joint probability distribution between N(τ)
i and

N
(T )
i =

∂T(T )
ij

∂xj
. (3.6)

The component by component joint PDF P(N(T )
i , N

(τ)
i ) is plotted in figure 7 for

Gaussian filters and 1283 numerical resolution.
It may be seen from figure 7 that the correlation coefficient between these two

vectors remains high. We use a Gaussian filter because it is both positive and
differentiable. For a top-hat filter which is not differentiable the level of correlations
is slightly lower than those in the case of a Gaussian filter (ρ ≈ 0.7).

3.5. ‘Taylor expansion’ and tensor eddy viscosity

It is believed (but not yet demonstrated) that, in the limit of zero viscosity, the
three-dimensional fluid velocity is not differentiable. Nevertheless, it is reasonable to
assume that, in this limit, the fluid velocity is Hölder continuous (see Frisch 1995),
i.e. for every point x in the flow domain the inequality

|v(x+ r)− v(x)| 6 C|r|h (3.7)

is satisfied for some C that may depend on x. Moreover, we expect that the fluid
velocity field is continuous, i.e. h > 0. In the Kolmogorov theory of turbulence h = 1/3
in the inertial range. For continuous but non-differentiable velocity, we expect that in
the neighbourhood of a point x, a ‘fractal’ Taylor expansion

vi(x+ r) = vi(x) + rh−1Cijrj + ... (3.8)

holds. In (3.8), the ellipsis indicates terms of higher order in r. If we apply an isotropic
filter to (3.8), the second term of this expansion gives a zero contribution leading to
the estimate

vi(x) ≈ 〈vi(x)〉` . (3.9)

The tensor Cij may be estimated in terms of the filtered velocity gradient 〈Aij〉` (1.11).
Indeed 〈Aij〉` can be straightforwardly calculated in terms of the second term in (3.8)
leading to

Cij =
3

(h+ 2) 〈rh−1〉`
〈Aij〉` , (3.10)

where 〈rn〉` is defined as

〈rn〉` =

∫
ϕ`(r)r

ndr. (3.11)

Using the definition of the SGS stress (1.3) and the ‘Taylor expansion’ (3.8), we
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obtain for an isotropic filter

τij =

(
3

(h+ 2) 〈rh−1〉`

)2
〈
r2h
〉
`

3
〈Aik〉` 〈Ajk〉` . (3.12)

The representation (3.12) implies that the coefficient cn in (1.10) equals

c(t)
n =

1

4(2h+ 3)
(3.13)

for the top-hat filter and

c(G)
n =

3π1/2Γ(h+ 3/2)

20(h+ 2)2Γ2(1 + h/2)
(3.14)

for the Gaussian filter. In (3.14), Γ is the Gamma-function. With h = 1/3 we obtain
c(t)
n ≈ 0.068 and c(G)

n ≈ 0.049.
We also measure cn using the computed joint PDF. It is found that, independently

of which component is used, the same coefficient is obtained. The data are plotted
in figure 8 for the Gaussian and top-hat filters and numerical resolutions 1283 and
2563. These results show that the values of cn are nearly independent of scale (except
for the case of the smallest filter sizes) and of Reynolds number. The values of cn
are slightly above the predictions (3.13) and (3.14) obtained for h = 1/3. Considering
the qualitative nature of these predictions, the actual numerical values for cn are
surprisingly close.

It is interesting to note that this Taylor expansion approach allows an easy gen-
eralization of the SGS stress representation for non-isotropic filters, which may
be important for problems with non-uniform meshes. Such meshes are typical
in most practical LES applications. To treat non-uniform meshes correctly, both
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inhomogeneous and anisotropic filters should be used. In the case of such filters, the
generalization of the tensor eddy viscosity parametrization of the SGS stress tensor
takes the form

τij = Jmn(`) 〈Aim〉` 〈Ajn〉` , (3.15)

where

Jmn(`) ∝
∫
ϕ`(r)rmrndr (3.16)

is proportional to (and indeed nearly equals) the moment of inertia of the filter.

4. Local energy flux
The local energy flux is defined from the energy balance (1.4) as

Π` = −∂i 〈vj〉` τij . (4.1)

In the tensor eddy viscosity representation, the actual local energy flux may be
parametrized as

Π(T )
` = cn`

2[−Tr
(
〈S〉3`

)
+ 1

4
〈ωi〉` 〈Sij〉` 〈ωj〉`]. (4.2)

The joint PDF P(−Π(T )
` ,−Π`) is plotted in figure 9 using top-hat filters and 1283

numerical resolution. It can be seen that the representation (4.2) correctly describes
the behaviour of the local energy flux (4.1) with a correlation coefficient as high as
for component-by-component correlation between the SGS stress and its tensor eddy
viscosity representation. The local energy flux is predominately positive, leading on
average to dissipation of energy. However, with a substantial probability the local
energy flux may become negative leading to so-called energy backscattering. It is
interesting that the level of correlations between the local energy flux and its tensor
eddy viscosity representation is high both for positive and for negative values of the
local energy flux.

The local energy flux may become negative due to the way it is defined. Indeed, the
large-scale energy balance (1.4) shows that the local large-scale energy may change
both due to the term that was called the local energy flux and due to the convective
current. The convective current may lead to local increase or decrease of the energy
but it cannot change the large-scale energy on the average. That is primarily the
reason why we call (4.1) the local energy flux. Therefore, the subdivision between the
transfer of the large-scale energy in space by the convective current and the transfer
of the large-scale energy across scales by the local energy flux is not reflected by
immediate local dissipation of the energy transferred to smaller scales. Indeed, this
energy may return to larger scales at some other spatial point via backscatter. Also,
the transfer of the energy between scales is more probable when the local energy is
increasing due to convective energy transfer in space. Therefore, strictly speaking, the
subdivision of energy transfer between convective transfer and local energy flux is
somewhat arbitrary and illusory.

In our numerical experiments we checked that 〈Π`〉 = Ē with good accuracy.
However, it turns out that it is impossible to predict the amount of energy that is
locally dissipated knowing only the local energy flux Π`. The local dissipation at
scale ` may be characterized as the filtered energy dissipation rate E` = 〈E〉`. The
energy dissipation rate E for flows subject to hyperviscosity is defined in (2.5). In
figure 10 we plot the joint PDF P(Π`,E`); it is apparent that the level of correlation
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Figure 9. Joint PDFs between the tensor eddy viscosity representation of the local energy flux as

ξ = −Π(T )
` and the actual local energy flux η = −Π`. Top-hat filters are used. For details see figure

2 caption. The results are plotted for 1283 numerical resolution (kd = 41). The filter scales are (a)
kc = 4, ρ = 0.87; (b) kc = 8, ρ = 0.84; (c) kc = 16, ρ = 0.88; (d) kc = 32, ρ = 0.96.

between the local energy flux and the local energy dissipation rate is relatively low.
The conditional averages of 〈Π`|E`〉 and 〈E`|Π`〉 are both nearly linear functions of
E`, Π`, respectively. That is higher E` generally corresponds to higher local energy
flux and vice versa. However, the highest values of the local energy flux do not
correspond to the highest values of the local dissipation and vice versa.

The absence of strong correlations between the local energy flux and the local
energy dissipation rate is not that surprising. Indeed, after energy at a certain scale `
is transferred to smaller scales this energy is not necessarily locally dissipated. Energy
needs some time to cascade to dissipative scales. While cascading this portion of
energy may be transferred back and forth in scales and convected in space, finally
dissipating in another region of space. The low level of correlation between the local
energy flux and the energy dissipation rate therefore reflects the cascade-like nature of
the dissipation. The cascade of energy on the other hand is intimately connected with
the convection of energy at inertial-range scales. The convective nature of cascades is
reflected in the presence of the energy backscatter.

The local energy flux is positive if the strain matrix is negatively skewed Tr(〈S〉3`) 6 0
and/or the vorticity stretching term 〈ωi〉` 〈Sij〉` 〈ωj〉` > 0 is positive. In the next section
we will show that this is indeed the case in three-dimensional homogeneous turbulence.
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Figure 10. Joint PDFs between the representation of the local energy flux as ξ = Π(T )
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local energy dissipation rate η = E`. Top-hat filters are used. For details see figure 2 caption. The
results are plotted for 1283 numerical resolution (kd = 41). The filter scales are (a) kc = 4, ρ = 0.36;
(b) kc = 8, ρ = 0.39; (c) kc = 16, ρ = 0.33; (d) kc = 32, ρ = 0.31.

5. The statistics of subgrid scales
In this section we study various statistical characteristics of the velocity gradient

tensor filtered at scale `.

5.1. Dynamics of velocity gradients

New insight into the dynamics of the local energy flux may be obtained by considering
the dynamics of the filtered velocity gradients

〈Aij〉` =
∂ 〈vi〉`
∂xj

. (5.1)

The equation for the dynamics of the large-scale velocity gradient matrix takes the
form

D` 〈A〉`
dt

+ 〈A〉2` −
I

3
Tr
(
〈A〉2`

)
= H (5.2)

The matrix I is the unit matrix and the traceless matrix H is

Hij = −∂
2(pδik + τik)

∂xj∂xk
+
δij

3

∂2(pδkl + τkl)

∂xk∂xl
. (5.3)
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In (5.3) the matrix τij is the SGS stress and the pressure p satisfies the equation

∆p = 1
2

〈
ω2
〉
`
−
〈
S2
〉
`
. (5.4)

The dynamics of the local energy flux is closely connected with the dynamics of
local velocity gradients. We have already demonstrated that the local energy flux Π`

may be reasonably well approximated as

Π` = −cn`2Tr
(〈
A†
〉
`
〈A〉2`

)
, (5.5)

where A† is the matrix transpose to A. The SGS turbulent energy K` in turn can be
approximated as

K` =
cn`

2

2
Tr
(〈
A†
〉
`
〈A〉`

)
. (5.6)

Then, from (5.2) the equation for K` takes the form

∂K`

∂t
= Π` −

∂J̃i

∂xi
+ O(`4), (5.7)

where J̃ i is a convective current which includes contributions from the pressure and
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O(`4) stands for terms proportional to the SGS stress τ . Thus the energy that is
transferred from the large-scales due to the local energy flux Π` (see (1.4)) ends up as
the SGS turbulent energy at low order in powers of `. The SGS stress term τij on right-
hand side of (5.2) modifies this balance, introducing possible dissipation at higher
order in `. Therefore, although the tensor eddy viscosity representation correctly
describes the dynamics of the large-scale velocity it may be not that accurate when
applied to the description of filtered large-scale velocity gradients.

The matrix of filtered velocity gradients is characterized by five invariants: Tr(〈S〉2`),
〈ω〉2`, Tr(〈S〉3`), 〈ωi〉` 〈Sij〉` 〈ωj〉` and (〈Sij〉` 〈ωj〉`)2. In this work we will study the
statistical characteristics of these invariants numerically.

5.2. Correlations between strain and vorticity

The squares of filtered strain and vorticity are the basic quantities that characterize
the level of fluctuations at a given scale. The joint probability distribution between

logarithms of those quantities, P(ln 〈ω〉2` , ln Tr(〈S〉2`)) is plotted in figure 11. The
data are obtained for 1283 numerical resolution with top-hat filters. From the results
plotted in figure 11, we see that the strain and vorticity at a given scale ` are only
weakly correlated. The correlation coefficient ρ in figure 11 measures the correlation
between ln Tr(〈S〉2`) and ln 〈ω〉2`. The correlation between Tr(〈S〉2`) and 〈ω〉2` is even
weaker.

The weak correlation between strain and vorticity at a given scale is an indication
of possible non-locality of Eulerian dynamics. If the dynamics are local, high vorticity
will generate a high level of strain in the same region. On the other hand, strain is
actually generated non-locally by high-vorticity regions across wide regions. In this
latter case, the dynamics of strain is largely decoupled from the local dynamics of
vorticity. Therefore, regions can exist where the flow is predominately potential or
predominately vortical.

It turns out that the PDF of squares of strain and vorticity at a given scale
are scale dependent. This fact is a manifestation of the well-known phenomenon of
intermittency in turbulence. Unfortunately, the extent of the inertial range in our
simulations does not allow us to determine the scaling exponents of these quantities
reliably. Nevertheless, some important conclusions can be drawn. In figure 12 we
plot PDFs of ln Tr(〈S〉2`)) and ln 〈ω〉2` for different filter scales and different Reynolds
numbers. At low strain or vorticity, these PDFs exhibit algebraic decay. Indeed, when
ξ = Tr(〈S〉2`)) is small, its PDF behaves asymptotically as P ∝ ξ5/2 and, in regions of

low vorticity η = 〈ω〉2`, the PDF of η has the asymptotic behaviour P ∝ η3/2.
On the other hand, for intermediate and high strains and vorticities the PDFs are

approximately exponential or stretched exponentials. The PDFs fall off substantially
faster than do log-normal distributions. The variance of the logarithm of strain ln ξ
depends on scale approximately as σ2

` ∝ −0.15 ln ` and the variance of the logarithm
of vorticity η behaves roughly as σ2

` ∝ −0.3 ln `. The averages 〈ln ξ〉 and 〈ln η〉 do not
show clear scaling behaviour; rather they behave crudely as 1/`4/3 in accordance with
Kolmogorov (1941) theory. Since the scaling of the moments of ξn and ηn with n > 0
is dominated by large strains and vorticities, the logarithmic dependence of variances
may lead to scaling laws for 〈ξn〉 and 〈ηn〉 with scaling exponents that depend on
n. Although we cannot determine these scaling exponents one qualitative conclusion
can be drawn. The vorticity at a given scale is rather more intermittent than strain.
We think that this fact reflects the presence of strong vortical coherent structures in
the fluid.
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Figure 12. (a) PDFs of the local strain ln(ξ = Tr(〈S〉2`)). (c) PDF’s of the local vorticity ln(η = 〈ω〉2`).
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correspond to interpolation formula for the variance of ξ (b) σ2

` ∝ −0.15 ln ` and for the variance
of η (d) σ2

` ∝ −0.3 ln `.

5.3. Negative skewness of the strain tensor

The symmetric matrix of strain is characterized by its real eigenvalues. In the following,
it will be convenient to introduce a parametrization of the eigenvalues of the large-
scale strain matrix 〈Sij〉`. This matrix is traceless and always has real eigenvalues z1,2,3

that satisfy the characteristic equation.

z3 − 1
2
Tr
(
〈S〉2`

)
z − 1

3
Tr
(
〈S〉3`

)
= 0. (5.8)

It is convenient to parametrize these eigenvalues as

zi = Γ cos
(

1
3
ψ
)
λi with Γ =

Tr
(
〈S〉2`

)1/2

√
6

and cosψ =
Tr
(
〈S〉3`

)
6Γ 3

. (5.9)

In equation (5.9) ψ varies from zero to π and the normalized eigenvalues are

λ1 = 2; λ2 = −1 +
√

3 tan 1
3
ψ; λ3 = −1−

√
3 tan 1

3
ψ. (5.10)
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Figure 13. Joint PDFs between ξ = tan(ψ/3) and local strain η = ln Tr(〈S〉2`). Top-hat filters are
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resolution (kd = 41). The filter scales are (a) kc = 4, ρ = 0.35; (b) kc = 8, ρ = 0.33; (c) kc = 16,
ρ = 0.3; (d) kc = 32, ρ = 0.28.

It follows from (5.9) and (5.10) that the matrix 〈S〉` is negatively skewed, Tr(〈S〉3`) 6 0,
when ψ > π/2. In this case the middle eigenvalue λ2 > 0.

The direction of the local energy flux represented using the resolved velocity
gradient (1.11) is largely determined by the skewness of the strain matrix which
is characterized by cosψ. If cosψ < 0, the strain matrix is negatively skewed and
the local energy flux tends to be positive. Since the eigenvalues are labelled so
that λ1 > 0 and λ3 < 0, negative skewness of the strain tensor translates into a
positive middle eigenvalue λ2 > 0. The skewness is negative when tanψ/3 > 1/

√
3.

The phenomenological foundations for negative skewness of the strain tensor are
extensively discussed in Monin & Yaglom (1975) together with early experimental
results. Numerically, negative skewness was analysed by Ashurst et al. (1987) for the
unfiltered strain tensor. In this work we will study the skewness of the filtered strain
tensor and its dependence on the filter scale `.

The joint PDF of P(tan(ψ/3), ln Tr(〈S〉2`)) is plotted in figure 13. The data are
obtained for top-hat filters and 1283 numerical resolution (the data for the 2563
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numerical resolution being quite similar). Based on this distribution it is possible to
calculate various characteristics of the eigenvalues of the strain matrix. It can be
seen from figure 13 that the conditionally averaged tan(ψ/3) changes from roughly

1/
√

3 in low-strain regions to roughly 2/
√

3 in high-strain regions. If we need to
know the conditionally averaged eigenvalues, the averaging should be performed for
the expressions (5.9). It turns out that the difference between conditionally averaged
eigenvalues and eigenvalues obtained by (5.10) with conditionally averaged tan(ψ/3)
is quite small. Therefore, the eigenvalues (z1, z2, z3) are proportional to (1, 0,−1) in the
case of low strain. In the case of the high strain, the proportionality is (1, 0.5,−1.5). The
average proportionality of the eigenvalues is (1, 0.15,−1.15). This should be compared
to (1, 0.33,−1.33) observed by Ashurst et al. (1987). We attribute this difference to the
fact that we use the filtered strain matrix and the Reynolds number in our simulations
is significantly higher. The average skewness cosψ ≈ −0.3. This value is in general
accord with the velocity difference skewness observed in our numerical simulations.
It is important that the dynamics of the strain skewness is self-similar. The ratios
of eigenvalues as well as the skewness cosψ are nearly independent of scale and
Reynolds number.

As can be seen from figure 13, the level of correlations ρ between tan(ψ/3) and

ln Tr(〈S〉2`) is not high. Also the PDFs of tan(ψ/3) for fixed ln Tr(〈S〉2`) is rather broad.
Therefore, the negative skewness of the filtered strain matrix should be considered as
a distinct tendency but it should not be used to predict the value of Tr(〈S〉3`) based

on the value of Tr(〈S〉2`). On the other hand, if we directly calculate the correlation

coefficient between Tr(〈S〉2`) and Tr(〈S〉3`) we will get ρ ≈ 0.77− 0.85. So a relatively
weak correlation between ratios of two quantities does not necessarily translate into
a weak correlation between these quantities.

We also measured the joint PDF of P(tan(ψ/3), ln 〈ω〉2`). It turns out that the
eigenvalues of the strain matrix are nearly independent of the filtered vorticity. This
is in good agreement with the generally low level of correlations between the squares
of filtered strain and vorticity.

5.4. Alignment of vorticity with the matrix of strain

We are also interested in the dynamics of the vorticity stretching term 〈ωi〉` 〈Sij〉` 〈ωj〉`.
We characterize the alignment between the vorticity vector 〈ωi〉` and the vector
〈Sij〉` 〈ωj〉` by the angle ϕ defined as

cosϕ =
〈ωi〉` 〈Sij〉` 〈ωj〉`[(
〈Sij〉` 〈ωj〉`

)2 〈ωi〉2`
]1/2

. (5.11)

This angle characterizes the general alignment between strain and vorticity. If
cosϕ > 0, the vorticity vector is aligned with one of the positive eigenvalues of the
strain. Although this angle does not give precise information with respect to which
eigenvector the vorticity is aligned with, it is useful to characterize the positivity of
the vorticity stretching term.

The joint PDF P(cosϕ, ln Tr(〈S〉2`)) is plotted in figure 14. When the strain is low
the conditionally average cosϕ is equal to zero. At higher levels of strain, cosϕ > 0
and the vorticity stretching term 〈ωi〉` 〈Sij〉` 〈ωj〉` is therefore positive. It is interesting
that this joint PDF is nearly independent of the scale ` at which it is measured.
The behaviour of the conditionally averaged cosϕ is similar to the behaviour of
the conditionally averaged tan(ψ/3) discussed above. We also measured the joint



24 V. Borue and S. A. Orszag

(a) (b)

0

0

0

(c) (d)

0

dêdê

dè

dè

0.5

–5

1.0–1.0

–5

–5

0

–5

–0.5 0 0.5 1.0–1.0 –0.5

0 0.5 1.0–1.0 –0.50 0.5 1.0–1.0 –0.5

Figure 14. Joint PDFs between ξ = cosϕ and local strain η = ln Tr(〈S〉2`). Top-hat filters are used.
For details see figure 13 caption. The filter scales are (a) kc = 4, ρ = 0.22; (b) kc = 8, ρ = 0.22; (c)
kc = 16, ρ = 0.2; (d) kc = 32, ρ = 0.19.

PDF P(cosϕ, 〈ω〉2`). In contrast with the case of strain, cosϕ and 〈ω〉2`) are nearly
independent.

To be more specific, it is convenient to parametrize the normalized vorticity vector
by the projections of this vector on the eigenvectors of the strain. We define the squares
of these projections as Ω2

i with i meaning the projection on the ith eigenvector. By
definition ΩiΩi = 1. It is possible to express Ωi through the invariants of the velocity
gradient matrix. For example

Ω2
1 =

z1 〈ωi〉` 〈Sij〉` 〈ωj〉` +
(
〈Sij〉` 〈ωj〉`

)2
+ z2z3

(z1 − z3)(z1 − z2) 〈ωi〉2`
(5.12)

with other Ωi obtained by cyclic permutations of the indexes (1, 2, 3).
As an example of alignment of the filtered vorticity vector with the filtered strain,

we plot in figure 15 the joint PDFs P(Ω2, ln Tr(〈S〉2`)) and P(Ω1, ln Tr(〈S〉2`)) for top-
hat filters with filter scales kc = 4 and kc = 16. The behaviour of this alignment is also
nearly scale independent. As may be seen from figure 15, Ω1 is nearly independent
of strain (and is nearly independent of local vorticity as well). We find the averages
〈Ω1〉 = 0.5 and

〈
Ω2

1

〉
= 1/3. In contrast, the projection on the middle eigenvector

depends on the level of filtered strain (and is nearly independent of filtered vorticity).
The conditional Ω2 changes from 1/2 for low strain to roughly 0.75-0.8 when the
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Figure 15. Joint PDFs between ξ = Ωi and local strain η = ln Tr(〈S〉2`). Top-hat filters are used.
For details see figure 13 caption. The results are plotted for 1283 numerical resolution (kd = 41).
The filter scales are (a) kc = 4, ξ = Ω2, ρ = 0.13; (b) kc = 16, ξ = Ω2, ρ = 0.12; (c) kc = 4, ξ = Ω1,
ρ = 0.003; (d) kc = 32, ξ = Ω1, ρ = 0.005.

strain is high. These results are in accord with the data of Ashurst et al. (1987)
except of the fact that in our case no correlation between Ω1 and strain is observed.
In contrast, Ashurst et al. (1987) find some decrease of Ω1 at high levels of local
strain.

5.5. Restricted Euler dynamics

It was noticed by Viellefosse (1982) that if the matrix H (5.3) can be neglected the
remaining equation is closed. Equation (5.2) with the term H neglected is called the
restricted Euler equation. It was shown by Viellefosse (1982, 1984) that restricted Eu-
ler dynamics lead to the formation of a singularity in finite time. The exact solution
of the restricted Euler equations was obtained by Cantwell (1992). It is not yet known
whether this singularity is an unphysical prediction of restricted Euler dynamics (but
R. Pelz 1996 and R. Kerr 1996, personal communications, argue forcibly that singular-
ities persist in the Euler dynamics at least for special initial conditions). We note that
when the singularity of (5.2) tends to form, the assumptions leading to the restricted
Euler equation become no longer valid. Nevertheless the restricted Euler equation
predicts strong negative skewness of Tr(〈S〉3`), i.e. the middle eigenvalue of the strain
matrix tends to be positive. Another prediction is the tendency of 〈ωi〉` 〈Sij〉` 〈ωj〉`
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to become positive. More accurately, the restricted Euler dynamics predicts that the
vorticity vector tends to align with the eigenvector of strain corresponding to the mid-
dle eigenvalue of strain. This type of behaviour is also observed in our simulations,
although the observed alignment is not as strong as predicted by the restricted Euler
dynamics.

Following Cantwell (1992) it is convenient to define the invariants

Q = − 1
2
Tr
(
〈A〉2`

)
= 1

4
〈ω〉2` − 1

2
〈S〉2` (5.13)

and

R = − 1
3
Tr
(
〈A〉3`

)
= − 1

3
Tr
(
〈S〉3`

)
− 1

4
〈ωi〉` 〈Sij〉` 〈ωj〉` . (5.14)

Under restricted Euler dynamics, the following quantity is conserved:

27
4
R2 + Q3 = Q3

0 = const. (5.15)

Also the system tends to evolve to an asymptotic state with R →∞, Q→ −∞ and the
initial Q0 therefore may be neglected. When the system approaches the asymptotic
state, equation (5.15) is satisfied with Q0 ≈ 0.

Note that the level of correlation between filtered strain and vorticity that we report
is rather low. The decoupling between strain and vorticity is in contradiction with
restricted Euler dynamics, in which high vorticity is always accompanied by high
levels of strain and vice versa. In particular, singular behaviour of strain and vorticity
takes place simultaneously.

It is interesting to compare the definition of R in (5.14) with the expression for the
local energy flux (1.12). Both these expressions contain similar terms with different
weights. As already discussed, the term Tr(〈S〉3`) has a tendency to become negative at
high levels of strain. The vorticity stretching term 〈ωi〉` 〈Sij〉` 〈ωj〉` by contrast tends
to become positive when the level of strain is high. Therefore both these terms lead
to positive local energy flux Π`. By contrast, a negative skewness of strain leads to
positive values of R but a positive vorticity stretching term decreases R. In view of the
conservation law (5.15) within restricted Euler dynamics, it is interesting to measure
the joint PDFs of Q and R as well as the joint PDFs of Q and Π`.

The joint PDFs of P(R,Q) and P(Π`, Q) are plotted in figure 16. We plot only
the PDFs for 1283 numerical resolution and top-hat filters with scale kc = 4, 16.
The PDFs for different positive filters, different filter scales and different numerical
resolutions are similar.

The conservation law (5.15) of restricted Euler dynamics may be interpreted as
showing that the joint PDF of P(R,Q) depends only on Q0. The isolines Q0 = const
and expected contour lines of the joint PDF were studied by Cantwell (1992). It is
remarkable that the observed isolines of P(R,Q) are in close correspondence with
the predictions of Cantwell (1992). In particular the conditional average 〈R|Q〉 in the
region where Q 6 0 corresponds nearly exactly to the conservation law (5.15) isoline
with Q0 = 0.

The isocontours of the joint PDF of the local energy flux P(Π`, Q) are notice-
ably different from those of P(R,Q). The local energy flux is positive in regions
where strain dominates vorticity Q 6 0. In regions where Q > 0, the conditional
Π` is only marginally positive. Therefore, most energy transfer by the local en-
ergy flux mechanism takes place in regions of high strain. In contrast, backscatter
or negative local energy flux is predominately observed in regions dominated by
vorticity.
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Figure 16. Joint PDFs P between ξ = R and η = Q (a, b). Joint PDFs between ξ = Π` and η = Q
(c, d). Top-hat filters are used. For details see figure 2 caption. The filter scales are (a) kc = 4, ξ = R,
η = Q, ρ = −0.47; (b) kc = 16, ξ = R, η = Q, ρ = −0.41; (c) kc = 4, ξ = Π`, η = Q, ρ = −0.31; (d)
kc = 16, ξ = Π`, η = Q, ρ = −0.28.

The fact that the restricted Euler dynamics predicts the qualitatively correct form of
the joint PDF P(R,Q) is rather surprising since other predictions such as a high level
of correlation between local strain and local vorticity does not hold. In this work we
test the basic assumption of restricted Euler dynamics directly, namely the possibility
of neglecting the traceless matrix H (see (5.3)) in the local gradient dynamical equation
(5.2).

The dynamical equations for Q and R can be obtained from (5.2), (5.13) and (5.14).
The equation for Q is

D`Q

dt
+ 3R + Tr(〈A〉` H) = 0 (5.16)

while the equation for R is

D`R

dt
− 2

3
Q2 + Tr(〈A〉` 〈A〉` H) = 0. (5.17)

It is possible to neglect the matrix H only if typically ξ1 � η1 and ξ2 � η2, where
ξ1 = 3R, η1 = Tr(〈A〉` H), ξ2 = 2Q2/3 and η2 = −Tr(〈A〉` 〈A〉` H).
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(η2) are normalized by the same variance of ξ1(ξ2). For other details see figure 2 caption. The results
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In figure 17, we plot the isocontours of the joint PDFs P(ξ1, η1) and P(ξ2, η2)
obtained using 1283 numerical resolution and top-hat filters with kc = 4, 16 (data
for other filter sizes are similar). The data in figure 17 are plotted with ξ1(ξ2) and
η1(η2) normalized by the same variances of ξ1(ξ2), respectively. As may be seen from
figure 17, the variables ξ1 and η1 are negatively correlated and the variables ξ2 and
η2 are strongly negatively correlated. Moreover, the magnitudes of the variables ξ1

and η1 as well as ξ2 and η2 are nearly equal. Therefore, it is impossible to neglect the
matrix H in equation (5.2). We can make an even stronger statement that the term
η1 substantially reduces the corresponding ξ1 term in equation (5.16). The terms ξ2

and η2 nearly cancel each other in equation (5.17). The substantial correlation of the
ξ1(ξ2) and η1(η2) terms suggest that

H ∝ 〈A〉2` − 1
3
ITr(〈A〉2`) (5.18)

with the coefficient of proportionality in (5.18) close to unity. A somewhat similar
statement is given by Cantwell (1993). The fact that at least some aspects of the
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restricted Euler dynamics are still reproduced in our numerical simulations can
probably be explained on the basis of the high level of correlation of the ξ1(ξ2) and
η1(η2) terms. Apparently these terms coming from the matrix H do not cancel each
other exactly but instead only slow down the evolution of Q and R and do not change
the dynamics qualitatively.

5.6. Filtered velocity gradients and velocity differences

As we discussed above, velocity differences may be reasonably described through the
filtered velocity gradients

∆(`)
j vi = vi(nj`)− vi(0) ≈ ` 〈Aij〉` , (5.19)

where nj is the direction of measurement of velocity differences. Therefore, the
statistics of velocity differences can be decomposed into the statistics of velocity
gradient invariants and a trivial factor linked to the rotation of the vector nj in space.
In particular, longitudinal velocity differences may be represented as

∆(`)
i vi ≈ `ni 〈Sij〉` nj . (5.20)

Thus the statistics of longitudinal velocity differences are described by the dynamics
of Tr(〈S〉2`) and Tr(〈S〉3`). A corresponding trivial part of the longitudinal velocity
difference statistics comes from incorporating the rotational degrees of freedom due
to the direction of measurements n in the velocity difference PDFs.

The statistics of transverse velocity differences are determined by the dynamics of
all five velocity gradient invariants. A quantity that directly probes the statistics of
vorticity only is the circulation

Γ` =

∮
vdr. (5.21)

We think that Tr(〈S〉2`) and 〈ω〉2` are mostly responsible for the scale dependence of
filtered velocity gradients. The other three invariants depend on scale mostly through
the latter two invariants, since their statistical properties are universal conditioned on
Tr(〈S〉2`).

We expect that squares of the filtered strain and vorticity exhibit scaling behaviour
and may also expect to see corrections to these scalings due to strain skewness and
alignment of vorticity. Moreover, the intermittency of filtered vorticity is nearly twice
as high as the intermittency of the filtered strain tensor. Therefore, the circulation
(5.21) is expected to be more intermittent than longitudinal velocity differences.
We may also expect the circulation to exhibit a scaling law different from that of
the longitudinal velocity differences. This was indeed observed in recent laboratory
measurements by Sreenivasan, Juneja & Suri (1995).

6. Discussion
The main conclusion of this paper is that the SGS stress tensor may be represented

in the form of a tensor eddy viscosity

τij = cn`
2 ∂ 〈vi〉`
∂xk

∂ 〈vj〉`
∂xk

, (6.1)

the form first suggested by Leonard (1974). The tensor eddy viscosity representation
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leads to a transparent expression for the local energy flux

Π` = cn`
2
[
−Tr

(
〈S〉3`

)
+ 1

4
〈ωi〉` 〈Sij〉` 〈ωj〉`

]
. (6.2)

The energy transfer over scales takes place in regions with negative skewness of the
filtered strain tensor or in regions where the vorticity stretching term is positive. Thus
the dynamics of the local energy flux is mainly determined by the dynamics of the
five invariants of filtered velocity gradients.

We demonstrated that normalized quantities such as the skewness of the filtered
strain matrix (see (5.9)) and the projection of vorticity on the strain matrix (see
(5.11), (5.12)) universally depend on the normalized rate of strain. Scale dependence
is mostly exhibited through the scale dependence of the Tr(〈S〉2`), 〈ω〉

2
` invariants. We

also demonstrated that the vorticity invariant is more intermittent than the strain
invariant. It was shown that when the level of the filtered strain is high the strain
matrix is strongly negatively skewed and the vorticity stretching term is strongly
positive. This leads to positive local energy flux from large to small scales.

The energy dissipation rate is found to be only rather weakly correlated with
the local energy flux. This fact reflects the cascade nature of the local energy flux.
Knowledge that energy is locally transferred on a certain scale to smaller scales does
not lead to knowledge of what portion of that energy is indeed dissipated in that local
region. This fact reflects the basic difficulties of LES schemes, namely the impossibility
of predicting the energy dissipation rate through knowledge of velocity gradients at
scales within the inertial range.

Moreover, it should be noted that the tensor eddy viscosity representation (6.1) is
symmetric in respect to the change of the direction of time. Therefore, the filtered
dynamics described by (1.1) is symmetric in respect to time reversal. Navier–Stokes
dynamics is, on the contrary, not symmetric to the arrow of time. The time sym-
metry of the filtered Navier–Stokes dynamics is broken due to the non-zero average
local energy flux. Indeed, the local energy flux (6.2) is symmetric to time reversion.
Therefore, 〈Π`〉 6= 0 manifests the time non-reversibility of the original equations.
The equation for the SGS stress τij is by contrast non-symmetric in respect to the
time reversion. Therefore, the representation (6.1) cannot be exact and should be sup-
plemented by terms that break time reversibility. Although the tensor eddy viscosity
representation will be the dominant term in the SGS representation, if used alone the
time-reversible nature of the resulting effective equation will lead to energy build-up
at small scales. Practical LES schemes may be obtained by supplementing the tensor
eddy viscosity representation (6.1) either by a Smagorinsky eddy viscosity (1.9) with a
small coefficient or by a hyperviscous dissipation. The resulting model is similar to the
so-called mixed model of Bardina et al. (1980). We carried out LES simulations with
such a mixed model. A stationary state of three-dimensional turbulence is reached
with statistical properties close to that of hyperviscous simulation. It is unclear at the
moment whether the addition of a tensor eddy viscosity to hyperviscous dissipation
has an advantage in comparison with hyperviscous dissipation alone.
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